The Effects of Input Type and Pronunciation Dictionary Usage in Transfer Learning for Low-Resource Text-to-Speech
Abstract
We compare phone labels and articulatory features as input for cross-lingual transfer learning in text-to-speech (TTS) for low-resource languages (LRLs). Experiments with FastSpeech 2 and the LRL West Frisian show that using articulatory features outperformed using phone labels in both intelligibility and naturalness. For LRLs without pronunciation dictionaries, we propose two novel approaches: a) using a massively multilingual model to convert grapheme-to-phone (G2P) in both training and synthesizing, and b) using a universal phone recognizer to create a makeshift dictionary. Results show that the G2P approach performs largely on par with using a ground-truth dictionary and the phone recognition approach, while performing generally worse, remains a viable option for LRLs less suitable for the G2P approach. Within each approach, using articulatory features as input outperforms using phone labels.
Type
Publication
Proceedings of INTERSPEECH 2023
This paper was accepted at INTERSPEECH 2023. It compares different input types for transfer learning in text-to-speech systems for low-resource languages, particularly focusing on West Frisian. The study also proposes methods to overcome the lack of pronunciation dictionaries in low-resource languages.